

УДК 621.391, 621.396, 621.369

К. В. Власова, М. А. Никитин, А. С. Чугайнов, А. В. Кочмарский

ОЦЕНКА ПАРАМЕТРОВ ИОНОСФЕРНОГО СИГНАЛА

Представлена методика оценки параметров двухлучевого ионосферного сигнала методом максимального правдоподобия. Приведены результаты модельных экспериментов, а также расчеты реальных ионосферных сигналов на трассе Москва — Калининград.

The technique of an estimation of parameters of a dual-beam ionospheric signal is presented by a method of the maximum credibility. Results of modeling calculations and results of calculations of real ionospheric signals on line Moscow — Kaliningrad are resulted.

Ключевые слова: ионосфера, распространение радиоволн, метод максимального правдоподобия, фазовая плоскость.

Key words: ionosphere, distribution of radio-waves, method of the maximum credibility, phase plane.

При длительностях зондирующих сигналов менее секунды в точку приема приходит несколько радиоимпульсов с временными задержками ~ 400 мкс. В этом случае ионосферный сигнал становится сложным. Он состоит из ряда радиоимпульсов, отраженных от разных областей ионосферы, с частичными наложениями во времени. Методика оценки параметров такого ионосферного сигнала дана в статье «Модель ионосферного сигнала с мультипликативной помехой», опубликованной в данном журнале (см. с. 85). В нашей работе продолжен анализ ее возможностей. Представлены результаты модельных экспериментов и расчетов параметров ионосферного сигнала на трассе Москва - Калининград. Полученные при этом данные отображены на фазовой плоскости. Показана возможность фазового уточнения частоты сигнала и начальной фазы радиоимпульсов. В отличие от корреляционного анализа начальная фаза оценивается на интервале радиоимпульса, а не в точке начала радиоимпульса.

В статье «Модель ионосферного сигнала с мультипликативной помехой» представлена методика оценки параметров ионосферного сигнала, состоящего из ряда радиоимпульсов, отраженных от разных областей ионосферы. Продолжим анализ возможностей данного метода на примере двухлучевого ионосферного сигнала. Частота ω оценивается выражением

$$C' = \frac{\sum_{n=1}^{N} (y_{n+2} + y_n) y_{n+1}}{\sum_{n=1}^{N} y_{n+1}^{2}} = \frac{\overline{(y_{n+2} + y_n) y_{n+1}}}{\overline{y_{n+1}^{2}}},$$
(1)

где $C' = \exp(i\omega \Delta t)$.

Для оценки амплитуды и фазы сигнала запишем функционал правдоподобия:

$$\Delta 1_n = \sum_{m=0}^{M} \left| \hat{y}_{n+m} - \hat{U}' \exp\left(i\omega t_{n+m}\right) \right|^2.$$
 (2)

Индекс m выполняет операцию суммирования на интервале обработки информации Δt (M=20, $\Delta t=20$ мкс). Индекс n определяет скользящий характер обработки. Дифференцируя (2) по \hat{U}' и приравнивая дифференциал к нулю, получим оценочное значение комплексной амплитуды \hat{U}' :

$$\widehat{U}'_{n} = \overline{\widehat{y}_{n+m}} \exp\left(-iwt_{n+m}\right). \tag{3}$$

Черта сверху означает суммирование на интервале $\Delta t = 20\,\mathrm{mkc}$. Выражение (3) справедливо для всех трех областей ионосферного сигнала за исключением переходных, где нет соответствия правой и левой частей функционала. На рисунке 1 показана зависимость оценочной фазы сигнала от времени. На интервале времени, где существует сигнал, дисперсия фазы небольшая. Отмечаются различия фаз первой, второй и третьей областей сигнала, а также регулярный наклон фазовой зависимости, связанный с неточностью оценки частоты ω . Наличие этого наклона позволяет провести коррекцию оценки частоты по фазе. Для этого из соотношения

$$\varphi(t) = \Delta \omega t + \varphi_0, \tag{4}$$

определяется погрешность частоты $\Delta \omega$ и добавляется к первоначальной оценке $\omega' = \omega + \Delta \omega$.

В результате частота ω' существенно уточняется, наклон линий сводится к нулю и фазы всех трех областей оказываются независимыми от времени (рис. 2). Таким образом, имеется возможность оценить начальные фазы ионосферного сигнала в моменты времени t_{01} , t_{02} , $t_{01}+T$. Фазы трех областей сигнала φ_1 , φ_2 , φ_3 могут быть представлены следующими выражениями:

$$\varphi_{1} = \varphi_{01},
\varphi_{2} = \varphi_{01} + \omega(t_{02} - t_{01}) - \varphi_{02},
\varphi_{3} = \varphi_{02} + \omega(t_{01} + T),$$
(5)

где φ_{01} , φ_{02} , t_{01} , t_{02} — начальные фазы и время приема первого и второго радиоимпульсов. При выполнении операции «коррекция часто-

ты» в выражениях (5) частота полностью исключается и фазы трех областей сигнала φ_1 , φ_2 , φ_3 однозначно оказываются связанными с начальными фазами радиоимпульсов $\, \varphi_{\scriptscriptstyle 01} \,$, $\, \varphi_{\scriptscriptstyle 02} \,$.

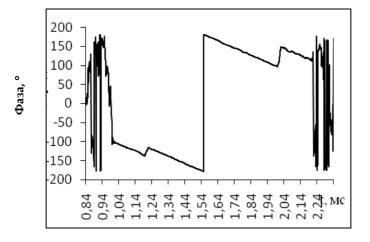
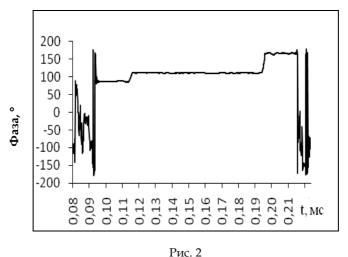



Рис. 1

Амплитуды трех областей ионосферного радиосигнала оцениваются по выражению (3). На рисунке 3 показана зависимость амплитуд от времени.

Первая область дает возможность оценить амплитуду первого U_1 радиоимпульса, третья — второго U_2 , а вторая — амплитуду $U_{1,2}$:

$$U_{1,2} = \sqrt{U_1^2 + U_2^2 + 2U_1U_2\cos(\varphi_{02} - \varphi_{01})}.$$
 (6)

В результате параметры двухлучевого ионосферного сигнала могут быть оценены.

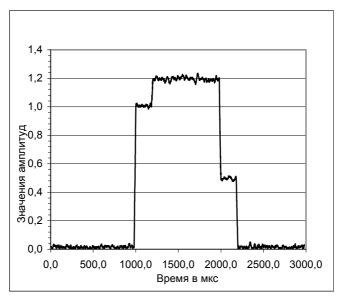


Рис. 3

Статистика получаемых решений показана на рисунке 4, изображающем фазовую плоскость, на которой точками представлены квадратурные компоненты $U\cos(\varphi)$ и $U\sin(\varphi)$. В результате совокупность точек в области нуля определяет распределение шума в отсутствии сигнала. При наличии сигнала отображаются три области с соответствующими амплитудами и фазами. Отношение «сигнал/шум» в данном случае равно 27 дБ. Статистика параметров сигнала (амплитуд и фаз) при уменьшении данного отношения до 13 дБ показана на рисунке 5.

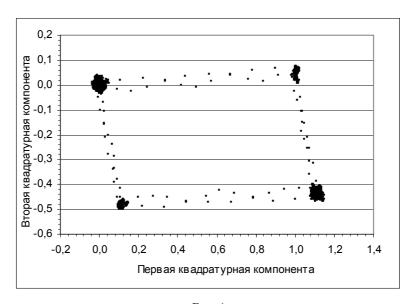


Рис. 4

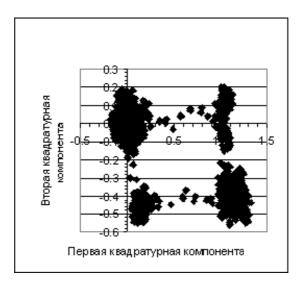


Рис. 5

Дисперсия амплитуды и фазы увеличилась, однако вполне возможно выделение областей сигнала и оценка средних значений амплитуд и фаз.

Фазовая плоскость является основой для обнаружения сложного, многолучевого импульсного ионосферного сигнала и анализа его структуры. Она может быть преобразована в двумерную поверхность плотности распределения амплитуды фазовых точек сигнала. Кроме того, на фазовой плоскости совокупность радиоимпульсов в комплексной форме имеет простой вид. Последовательные отсчеты сигнала в первой области можно записать как

$$\hat{U}_{1n} = U_{01} \exp(i(\omega t_n + \varphi_{01})), t_{01} < t_n < t_{02}$$

Во второй области

$$\widehat{U}_{2n} = U_{01} \exp(i(\omega t_n + \omega t_{02} + \varphi_{01})) + U_{02} \exp(i(\omega t_n + \varphi_{02})), \ t_{02} < t_n < t_{01} + T.$$

В третьей -

$$\hat{U}_{3n} = U_{02} \exp(i(\omega t_n + \varphi_{02})), t_{01} + T < t_n < t_{02} + T.$$

Если исключить частоту ω , то в комплексном виде в первой, второй и третьей областях сигнала выражения будут иметь следующий вид:

$$\widehat{U}_{1} = U_{01} \exp(i\varphi_{01}),
\widehat{U}_{2} = U_{01} \exp(i\varphi_{01}) + U_{02} \exp(i\varphi_{02}),
\widehat{U}_{3} = U_{02} \exp(i\varphi_{02}).$$
(7)

Это основа для анализа сложной многолучевой структуры ионосферного сигнала. При наличии трехлучевой структуры выражения (7) запишутся в виде

$$\widehat{U}_{1} = U_{01} \exp(i\varphi_{01}),
\widehat{U}_{2} = U_{01} \exp(i\varphi_{01}) + U_{02} \exp(i\varphi_{02}),
\widehat{U}_{3} = U_{01} \exp(i\varphi_{01}) + U_{02} \exp(i\varphi_{02}) + U_{03} \exp(i\varphi_{03}),
\widehat{U}_{4} = U_{02} \exp(i\varphi_{02}) + U_{03} \exp(i\varphi_{03}),
\widehat{U}_{5} = U_{03} \exp(i\varphi_{03})$$
(8)

Решая данную систему относительно комплексных амплитуд радиоимпульсов, можно оценить структуры ионосферного сигнала.

В таблице представлены оценки параметров двухлучевого сигнала в зависимости от отношения «сигнал/шум». В первой ее строке даны модельные значения параметров двухлучевого ионосферного сигнала. В остальных строках представлены оценочные данные сигнала в зависимости от отношения «сигнал/шум».

Сигнал/шум, дБ	U_1 , B	$\varphi_{_{\! 1}}$, $^{\circ}$	<i>t</i> ₀₁ , MC	U_2 , B	φ_2 , $^{\circ}$	t_{02} , MC	f , к Γ ц
Модельные данные	1	10	1	0,5	90	1,2	215
33	1,0089	9,58	1	0,499	89,96	1,2	215,0015
27	1,012	9,94	1	0,498	89,8	1,2	215,0007
21	1,019	10,7	1	0,494	89,8	1,198	214,9991
18	1,027	10,1	1	0,489	88,9	1,193	215,0013
15	1,035	9,75	1	0,485	87,6	1,191	215,0027
13	1,04	9,65	1	0,48	85,9	1,19	215,0041
12	1,04	-1,009	1,01	0,479	64,5	-	215,0322
33	1,0089	9,58	1	0,499	89,96	1,2	215,0015

Результаты модельных исследований структуры сигнала

Оценим с точки зрения теории оптимального приема погрешности параметров двухлучевого ионосферного сигнала.

Согласно теории [1; 2], дисперсии амплитуды $D_{_U}$, начальной фазы $D_{_{\varphi_0}}$, частоты $D_{_f}$ и времени приема $D_{_{t_0}}$ оцениваются выражением Рао — Крамера

$$D_{f} = \frac{\sigma^{2}}{\left|\hat{U}\right|^{2} N T^{2} \left(2\pi\right)^{2}}, \quad D_{U} = \frac{\sigma^{2}}{N}, \quad D_{\varphi_{0}} = \frac{\sigma^{2}}{\left|\hat{U}\right|^{2} N}, \quad D_{t_{0}} = \frac{\sigma^{2}}{\left|\hat{U}\right|^{2} N \omega^{2}}, \quad (9)$$

где σ^2 — дисперсия шума; N — количество некоррелированных по шуму отсчетов; T — длительность интервала обработки; ω — круговая частота.

Принимая $\sigma=0,1$, f=215 кГц, T=20 мкс, получим следующие среднеквадратичные отклонения: $CKO_{U_1}=0,006$, $CKO_{U_2}=0,006$, $CKO_{Q_0}=1,14^\circ$, $CKO_{\varphi_{02}}=2,29^\circ$, $CKO_f=0,44$, $CKO_{I_0}=5\cdot 10^{-3}$. Данные погрешности параметров сигнала, в принципе, соответствует оценкам Рао — Краме-

83

ра. Исключением является время приема первого радиоимпульса t_{01} которое имеет погрешность ~ 3 мкс, что не соответствует оценке Рао — Крамера. Однако это близко к оценке Вудворда, определяющей дисперсию времени приема по огибающей радиоимпульса:

$$D_{t_0} = \frac{\sigma^2 T}{|\hat{U}|^2 N (2\pi)^2}.$$
 (10)

 $\mathit{CKO}_{\scriptscriptstyle to}$, рассчитанное согласно этой формуле, дает значение 0,2 мкс.

Таким образом, модельные расчеты показали возможность оценки параметров двухлучевого импульсного ионосферного сигнала с высокой точностью. Применение метода оценки параметров ограничено отношением «сигнал/шум» ~13 дБ.

Список литературы

- 1. *Перов А.И.* Статистическая теория радиотехнических систем: учебное пособие для вузов. М., 2003.
- 2. Пахотин В.А., Бессонов В.А., Молостова С.В., Власова К.В. Теоретические основы оптимальной обработки сигналов: курс лекций для радиофизических специальностей. Калининград, 2008.
- 3. *Афраймович Э.Л.* Интерференционные методы радиозондирования ионосферы. М., 1982.

Об авторах

Ксения Валерьевна Власова — канд. физ.-мат. наук, доц., Балтийская государственная академия рыбопромыслового флота, Калининград.

E-mail: p_ksenia@mail.ru

Михаил Анатольевич Никитин — д-р физ.-мат. наук, проф., Балтийский федеральный университет им. И. Канта, Калининград.

E-mail: MNikitin@kantiana.ru

Александр Сергеевич Чугайнов — асп., Балтийский федеральный университет им. И. Канта, Калининград.

E-mail: p_ksenia@mail.ru

Алексей Викторович Кочмарский — асп., Балтийский федеральный университет им. И. Канта, Калининград.

E-mail: p_ksenia@mail.ru

About authors

Ksenia Vlasova — PhD, associate professor, Baltic State Academy, Kaliningrad. E-mail: p ksenia@mail.ru

Mikhail Nikitin — Dr, professor, I. Kant Baltic Federal University, Kaliningrad. E-mail: MNikitin@kantiana.ru

Alexander Chugajnov — PhD student, I. Kant Baltic Federal University, Kaliningrad. E-mail: p_k

Aleksey Kochmarsky — PhD student, I. Kant Baltic Federal University, Kaliningrad. E-mail: p_k